Tips and Tools for the 21st Century W/WW Process Monitor

Maryland Center for Environmental Training 301-934-7500 <u>info@mcet.org</u> www.mcet.org

Tips and Tools for 21st Century Water/Wastewater Process Monitoring

7 contact hours 9 CC10 hours

To maintain the water/wastewater treatment process at peak operational performance, operators can effectively utilize simplified on-site monitoring tools and techniques. This interactive course examines reduction/oxidation (redox) and simple alkalinity monitoring as tools that enable the operator to assess current operational conditions, identify problem areas, and make operational changes. This course also covers simplified monitoring methods for nutrient measurements and residuals measurement such as fluoride, pH, and dissolved oxygen.

- 1. Describe reduction/oxidation and simple alkalinity monitoring in detail;
- 2. Identify other simplified monitoring methods for nutrient measurements;
- 3. Demonstrate monitoring method for residuals such as fluoride, pH, and dissolved oxygen.

(60 Minutes)

(120 Minutes

(120 Minutes)

- A) Workshop objectives (45 Minutes)
- 1) Simply monitoring of water/wastewater process
- 2) Resource conservation
- 3) Better process operations
- B) Simplified techniques
- 1) Oxidation Reduction Potential (ORP)
- 2) Alkalinity monitoring
- 3) Simplified DO
- 4) Simplified Nutrient monitoring
- 5) Other simplified tests
- C) Oxidation Reduction Potential ORP
- 1) Definitions
- 2) Demonstrations
- 3) Reference
- 4) Applications in Water/wastewater processes
- 5) Verifications
- 6) Case histories
- D) Alkalinity Monitoring
- 1) Definition
- 2) Measurement demonstrations
- 3) Reference
- 4) Applications in Water/Wastewater Processes
- 5) Verifications
- 6) Case Histories

E) Other simplified process monitoring tools

(60 Minutes)

- 1) DO measurements
- 2) Simplified Nutrient measurements
- 3) Simplified Fluoride measurements

F) Conclusions, Q & A

(15 Minutes)

©This course is property of MCET and/or the trainer.

Tips & Tools for the 21st Century Water/Wastewater Process Monitor

Simple Operations Monitoring Tools Mike Harrington

ORP

Contact Info, Mike Harrington

- <u>cmhco@verizon.net</u>
- 410-739-2331, Cell
- 410-928-3591, Office

Objectives

- \bullet Simplify – Simplify – Simplify
- Avoid a potential catastrophic event
- Save some time
- The KISS principle really does apply here!
- Manual control or manual over-ride is still a valid control option.
- We don't necessarily need "Rocket-Science" to manage our processes...all the time

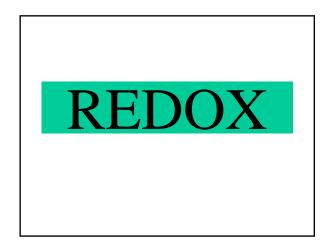
Questions to consider????

- In your opinion, what's the most important simple process control measurement an operator can run?
- What's the second?
- What's the third?
- T or F, My chemical supplier always delivers the same consistent product....upon every delivery?
- T or F, I always VERIFY every chemical delivered to my facility?

Questions to consider???

- Name a compound that expands when heated and when frozen?
- At what temperature is that compound most dense?
- How many of you operators like math?
- In an Activated Sludge facility, what percent (%) of your bugs capacity to do work is lost if the wastewater temperature drops 10°C

Applications


≻Water

⊁ Wastewater

➢ Industrial Wastewater

What Kind of Tools?

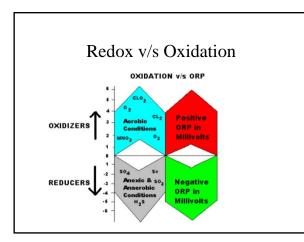
- Redox Monitoring
- Alkalinity Monitoring
- Simplified Nutrient Monitoring
- Fluoride Monitoring

Redox?

→ What is Redox?

- Redox measurements?
 Apparatus?
- > Verification?
- > Applications?

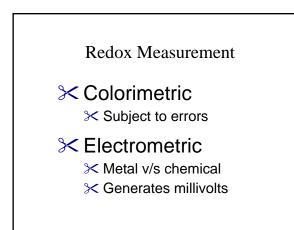
Why Redox?

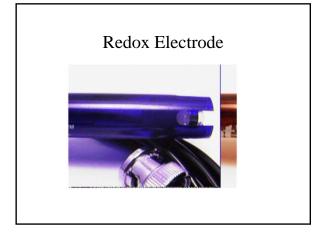

- ightarrow Reduce process monitoring
- $ightarrow {
 m Simplify monitoring}$
- ightarrow Chemical test reagent cost
- ightarrow Reagent disposal costs
- ➤ Time-saver

Transfers of Electrons Thru

- ➤ Microrganism destruction
- ℅ Enzyme destruction
- ➢ Nutrient removal
- ℅ Sludge digestion

- Oxidation Reduction Potential is.....
- A measurement of a waters capacity to oxidize and reduce




Chlorination/Dissolved Oxygen

- Steal electrons from Corganics
 - > Microrganisms
- > Seek to balance chemistry

Down to Earth Examples

- ➢ In the stock market, someone purchases a share of stock, someone else must sell that share
- ℅Rust Iron is oxidized, Oxygen is reduced
- ℅ Fire Carbon & Hydrogen oxidized, Oxygen reduced

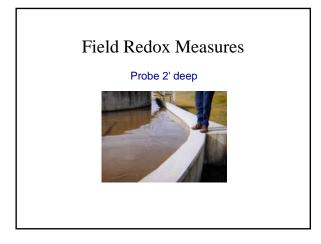
Seven Deadly Sins of Probe and Meter Measurements

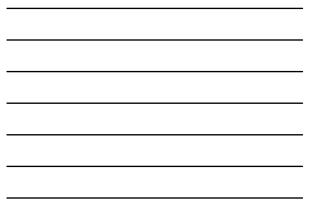
- Probe /meter selection
- Proper filling solutions
- Probe storage errors
- · Limiting ions and demand in dilution waters
- Infrequent calibrations
- Forgetting temperature compensation
- Reused standards/buffers

Portable Redox Meter

Generates Millivolts

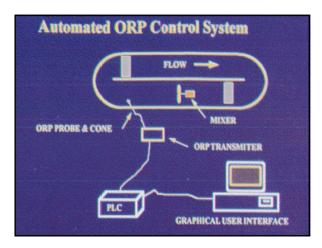
- ℅ Reaction w/ probe metal
- > Compared to reference voltage
- ℅ changing oxidized state from one another
- ℅ Electron transfer
- ➢ Form of battery


KEY ORP POINTS


- All measurements are taken on-site
- All measurements in Millivolts (mV)
- ORP probes not typically temperature compensated.
- May take longer time window to get stabilized readings
- Expect more probe maintenance than w/ typical pH probes.

Field Redox Measures

Field Redox Measures



Process REDOX

- > Continuous monitoring
- >Insitu installation
- > Computer interface
- ➢ Process Control

Process Applications

- Collection system monitoring
- Nitrification/Denitrification
- Phosphorus removal
- Toxicity screening
- Chlorination/Dechlorination
- Sludge digestion

Verification/Reference

≻ Light's Solution >< 453 mV @ 20 deg C</p>

ightarrow pH buffers w/ (4&7)

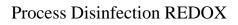
➢ Quinhydrone
 ➢ 96mV @ 20C (7)
 ➢ 170-185 mV about 7 buffer (4)

Wastewtr. Applic.

Wastewtr Applic.

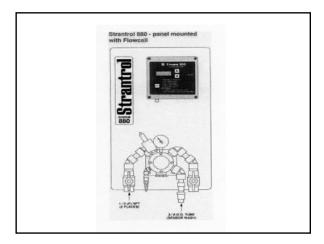
- ℅General W/W Applications
- Sold or control
- > Organic Carbon Reduction
- >> Industrial Wastewater

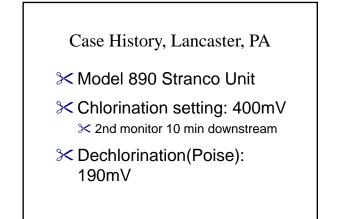
Chlorination

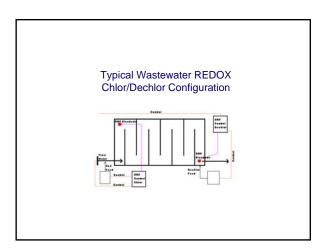

- ➢ Process/Portable
- > Indirect residual measure
- >> 380 750 mV potent.
- > Demand-based (Poise)

Process Disinfection REDOX

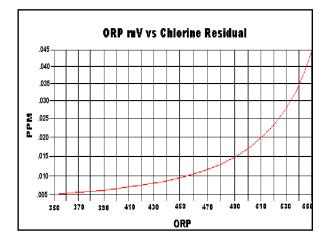
- > High purity Platinum sensor
- > Probe contamination
- ➢ Reference junction
- > Self-cleaning probes


Dechlorination

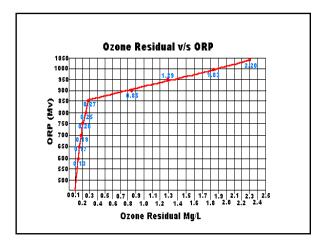

- ➢ Low mV control
- >> Slight overdose Sulfite
- Separate sensor/controller
- > Chemical conservation

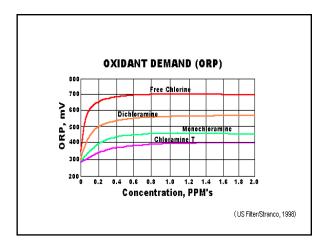


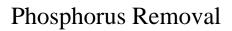
- > High purity Platinum sensor
- > Probe contamination
- ➢ Reference junction
- ℅ Self-cleaning probes

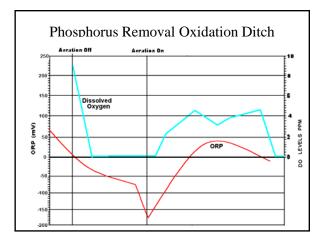




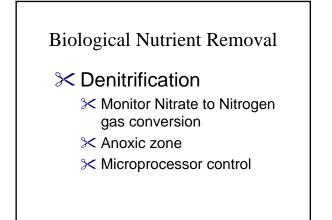




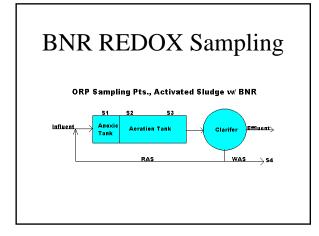




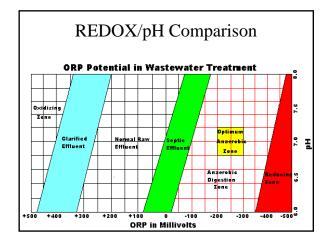
- Aerobic and Anaerobic process
 - Anerobic zone releases phosphorus (bacteria)
 - Aerobic zone absorbs (bacteria)
- Target REDOX:
 - Anaerobic Zone: -200 to -300 mV
 - Aerobic Zone: > +100 mV



Biological Nutrient Removal


➢ Nitrification

- Monitor Ammonia to Nitrate conversion
- ≻ Oxic zone

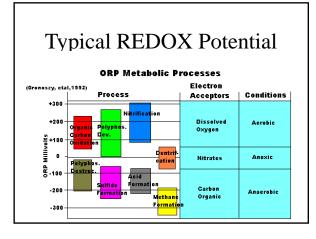


- ℅ Influent monitoring(Sulfates)
- ➤ Clarifier effluent
- ➤ Aeration basin
- ➤ Trickling filter eff
- > Anaerobic digestion

Toxicity Screening

- ➢ ID Ilicit Inflows
- ℅Trace Unk. Inflows
- ➢ REDOX Varies w/ Waste Stream

Anaerobic Sludge Digestion


- ➢ Negative REDOX values
- Solution Acid formation (Volatile) Solution -250 mV potential
- ➤ Methane formation ➤ -175 to -350 mV potential

- > Oxidize organics
- Solution Series Solution Serie
- ➢ Restart O2 after decant cycle

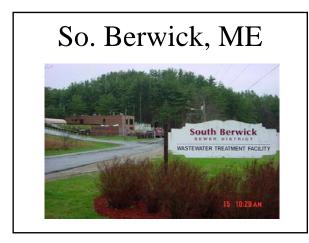
Organic Carbon Reduction

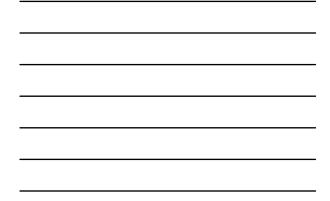
- ℅ Oxidation
- Approx. +50 +225 mV potential

Industrial Wastewater

Metal finishing wastes

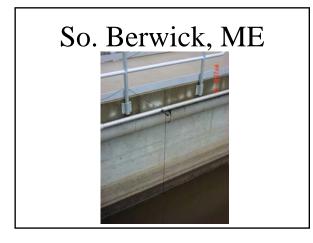
- > Cyanide destruction
 - Security Excess Chlorine
 - ≫ High pH
 - ightarrow +300 to +600 mV potential

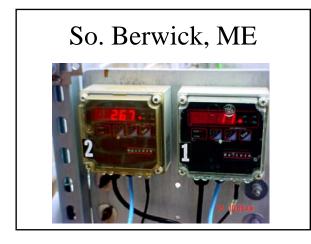

Industrial Wastewater

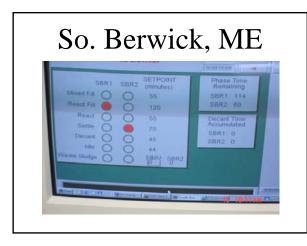

- > Chromate reduction
 - ℅ Excess Sulfite
 - ≻ Low pH
 - > -50 to -300 mV potential

Case Histories

℅ South Berwick, ME


- >> 250,000 GPD
- ℅ SBR process
- ➢ Process REDOX
- ⊁ +250mV range
- ightarrow Aerobic oxidation monitoring





St. Clairsville, OH

- 𝒫 0.1 MGD Extended air plant

Page 66

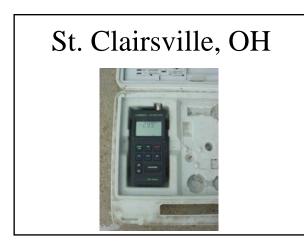
- Service Filamentous Problem
- Some redesign consideration

Problem Resolution

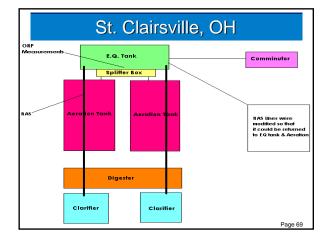
- Microscopic filament Identification
- Composition Dominant organism.. (S. Natans likes low DO)
- GCORP measurements in equalization
- Ser RAS redirected to equalization

Page 67

Filament Control Considerations


GSORP maintenance

 $\operatorname{\textup{Range}}$ -50 to -100 Mv


Controls filament growth

Score Blower control to add DO

Page 68

Town Of Zillah, WA

> Oxidation Ditch

$\succ \mathsf{BNR} \ \mathsf{Process} \ \mathsf{REDOX}$

≻ -50 - +50mV, Anoxic
 ≻ +250 to +300mV, Oxic

BNR Control - Off

DO/REDOX

Indication & Control

ALKALINITY

Alkalinity - Definition

- Ability of water to resist change in pH
- ℅Buffering capacity
- ➢ Results as CaCo3

Benefits?

- ℅ Immediate results
- ➢ Better process control
- >> Potential to save on electrical costs
- > Predictability

Types of Alkalinity

- ➤ Total Alkalinity
 - ➤ Carbonate
 - ➢ Bicarbonate
 - ⊁ Hydroxide
 - >> Other minor forms,(Borate, Phosphates)

Why Monitor Alkalinity?

- > Direct/Immediate Indicator
- > Predictable
- > Real time, right now results

Monitoring Methods

≻ Onsite

➢ Portable/insitu

On-line process
 Monitor
 Control

Alkalinity

> Key parameter in both:

- 🔀 Water
- → Wastewater
- ightarrow Simple monitoring test

Water

- Treatment processes need Alk >> Lime-Softening
- Certain treatment chemicals use up Alk
 Alum
 Ferric Chloride

Lead/Copper Rules

℅ Alkalinity

- ightarrow Key water quality parameter
- ➢ Required measurement
- ightarrow Minimize leeching

Corrosion Control

➤ Major element of corrosion Indexes

- ℅ Langelier
- ➤ Aggressive
- ➢ Driving Force, etc

➢ Depositing waters

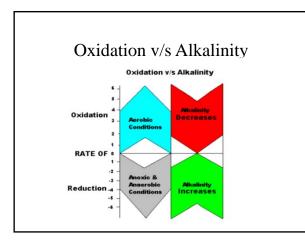
Potable Waters (well, Surface)

≻ Low raw Alkalinity≻ Low pH's common

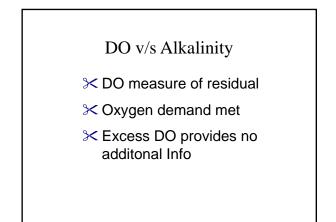
Water Treatment

℅ Raise pH & Alkalinity

➤ Caustic


🔀 Soda Ash

⊁ Lime


🔀 Calcite

pH adjustment chemical	Typical feed rate	1 mg/L adds mg/L alkalinity*	Equipment required
Lime, as Ca(OH) ₂	I-20 mg/L (8-170 lb/MG)	1.35	Quicklime-slaker, hydrated lime-solution tank, and feed pump with erosion- resistant lining as eductor
Caustic soda, NaOH (50% solution)	1-29 mg/L (8-170 lb/MG)	1.25	Proportioning pump or rotameter
Soda ash, Na ₂ CO ₃	1-40 mg/L (8-350 lb/MG)	0.94	Solution tank, proportioning pump, or rotameter
Sodium bicarbonate, NaHCO,	5-30 mg/L (40-250 lb/MG)	0.59	Solution tank, proportioning pump, or rotameter

Alkalinity v/s DO

 \succ Indicates rate of oxidation

 \succ Independent of other factors

>> Direct relationship(Nitrification)

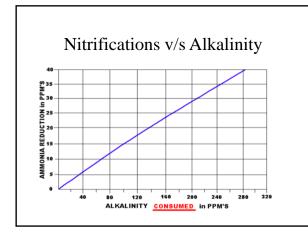
Ball Park Parameters

Calculate Ammonia v/s Alkalinity Demand

℅ Effluent - > 50 -70 ppm

➢ Raw infu - 200 ppm

Alkalinity measurements

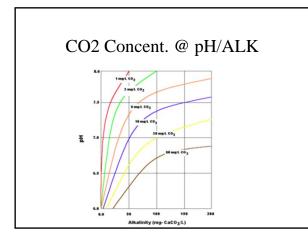

- > Essentially Bicarbonate
- ≻Real time
- **≻** Predictable

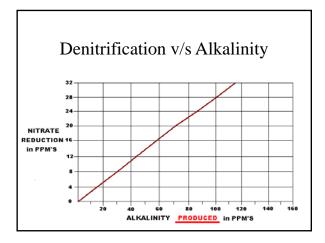
Bio. Nutr. Remov.(BNR)

>> Nitrification(Aerobic)

ightarrow For every ppm of Ammonia

- >> Uses 2 Bicarb for every Ammonia converted
- ≻ Uses 7.1 ppm Alk.

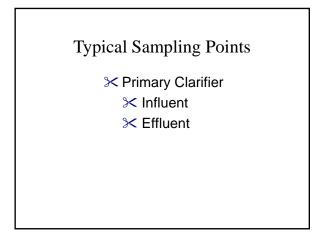

ALK V/S CO2

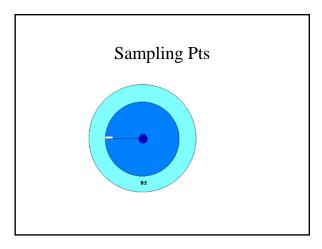

> Buildup thru bacterial actions

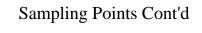
≻ Change pH

> O2 drives off CO2

🔀 Raises pH

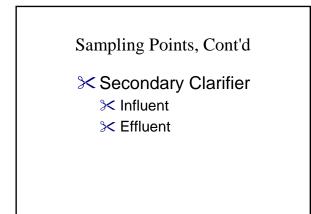



Sulfate Reduction(Anaerobic)

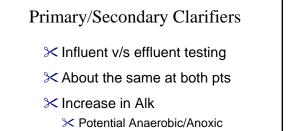

- S Bicarbs produced for Ammonia produced
- ℅ For every PPM of Ammonia
- ℅Adds 17.86 PPM of Alkalinity

Predictability

- ℅ Rate of Alkalinity loss predicts Nitrification rate
- ℅ Rate of Alkalinity gain predicts Anoxic/Anaerobic rate
- Alkalinity rate gain difference >> Distinguish between anaerobic/septic conditions



> Aeration Basin


- ightarrow Mix basin
- 🔀 #1 Effluent
- ¥2 Effluent

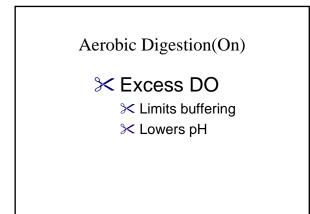
Sampling Points, Cont'd

Alkalinity & Predictability

- > Select sampling points
- ➢ Run Alkalinity test
- ℅ Record results
- > Gather historic data

 \gg Reduce solid retention time

Aeration Basin


➤ Compare Alk @ all Pts

- If Alk is < expected
 Nitrification insufficient
 Increase air
 Adjust
 MLSS
 Inhibitors
 - ≻ RAS/WAS

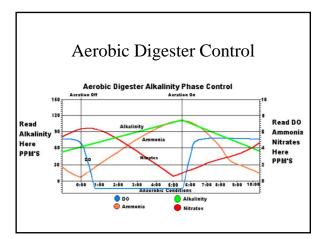
Aeration Basin

> If Alk > than expected

- ➤ Too rapid Nitrification
- ℅ Low buffering
- ≻ Low pH
- ➤ "Pinfloc"

Aerobic Digestion(Off)

> Uses up Residual DO

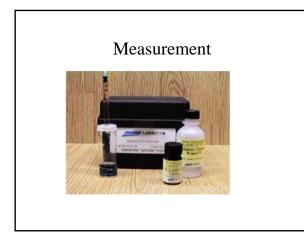

➢ Reduces Nitrates

> Adds Alkalinity

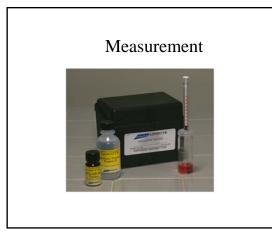
> Watch septicity

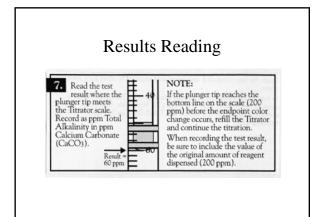
Aerobic/Anoxic Phasing

- ightarrow Controls air on/off cycles
- Sets control points for Alkalinity
- ➢ Precise control
 - \succ Decant cycle
 - ➢ Bio activity



Alkalinity Measurements


- > Color Endpt. Titration
- ℅ Mtr. Endpt Titration
- > Direct Measure via pH Mtr.


LaMotte

- > Color endpt. titration
- ightarrow Simple field kit
- > Quick/Inexpensive
- ➢ Accurate results

pH Mtr. Titration

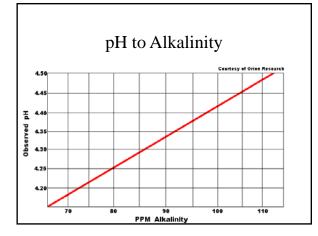
Solation Cal. pH mtr. ℃

➤ Titrate Sample w/ acid

℅ Endpoint Titration

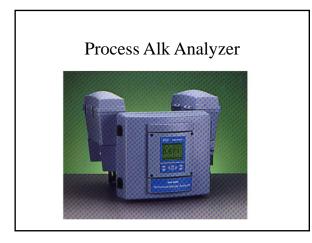
> Ideal for wastewaters

pH Mtr. Titration


Orion

> Solids - no problem

➢ Quick/inexpensive



Process Alk Measures

- ➤ Timed auto sampling
- ➢ Reagent Injection
- ➤ Colormetric Analysis
- >> Digital Interface/Computer control

Results Verification

≻ Standards

℅ Standard addition

➤ Titrant Standardization

Two Rivers WWTP, (WI)

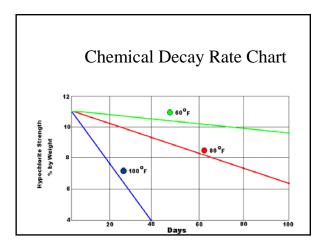
Case History

Two Rivers WWTP (WI)

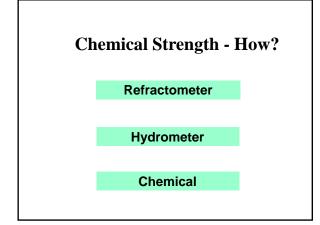
- ℅ Raw influent Alk. 220 PPM
- Ferric Chloride addition \$\leftarrow 25 - 30 PPM Alk Demand

Two Rivers WWTP (WI)

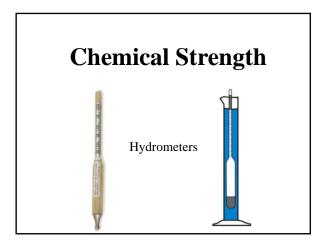
- Average Raw Ammonia % 20 PPM % requires 145 PPM Alkalinity
- ℅ Residual of 40 50 PPM ℅ Maintains Effluent pH

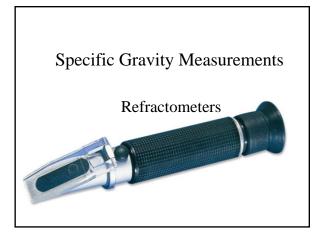

Simplified, Low-cost, On-site Monitoring

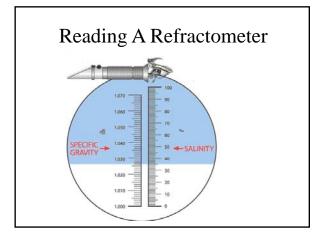
Simplified On-site Tests

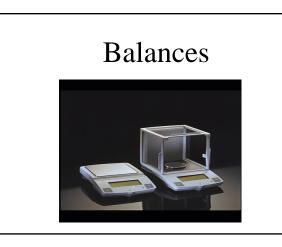

- DO
- pH
- Ammonia • Nitrate
- Bleach • Caustic
- Acid
- Nitrites
- Phosphorus
- Specific Gravity
- Peroxide


• Hypochlorite


- Permanganate
- Leak Detection







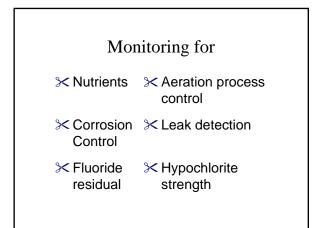
Specific Gravity by Weight

- 10 mL sample in a weighing bottle
- Analytical weight measurement to 4 decimals places
- Divide the measured weight by 10
- Result represents Specific Gravity
- Convert to % available Chlorine
- <u>Note: This method can used to measure</u> <u>SG of any liquid chemical</u>

Specific Gravity Limitations

- Other components of hypochlorite "add" to SG
 - Sodium chloride concentration
 - Caustic concentration- excess present
 - Amount of Sodium Chlorate present
 - Amount of available chlorine
 - Temperature compensation of the measuring apparatus.
 - Most measurement taken at 20°C

	U	onve	
		TABLE	n .
SODIUM HYPOCHLORITE CONCENTRATIONS 75. SPECIFIC GRAVE			
Trade %	gpl	wt. % NaOCI	SP.GR @ 20" C
1.0	10.0	1.03	1.020
1.5	15.0	1.53	1.027
2.0	20.0	2.03	1.034
2.5	25.0	2.52	1.041
3.0	30.0	3.01	1.048
3.5	35.0	3.48	1.055
4.0	40.0	3.95	1.062
4.5	45.0	4.42	1.069
5.0	50.0	4.88	1.076
5.5	55.0	5.33	1.083
6.0	60.0	5.78	1.089


Г

Chemical Tests Methods

- Hypochlorite/Bleach
- Hydrogen Peroxide
- Potassium Permanganate
- Acids
- Caustics

Nutrient Monitoring Objectives

- Selection Select
- ℅ Optimize peak performance of the three distinct biological processes.
- ℅ Response to changing conditions
- ➤ Results are for monitoring ONLY!

Background, (Review)

> Nitrification - conversion. Ammonia to Nitrites

Denitrification - Conversion of Nitrates under anoxic conditions (not Septic) to Nitrogen gas via temperature sensitive bacteria using organic matter as food source, (or other carbon source)

 Nitrification/Denitrification process will effect some key water quality parameters:
 pH

X Alkalinity

🔀 Ammonia

➢ Nitrites

➢ Nitrates

Simplified Testing Protocol

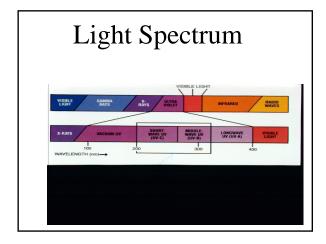
➢ pH - meter & probe

℅ Alkalinity - Titration

ightarrow Ammonia - Colorimetric

> Nitrates - Colorimetric

>> Nitrites - Colorimetric



Ammonia Testing, Typical

Seven Deadly Sins of Colorimetric Testing

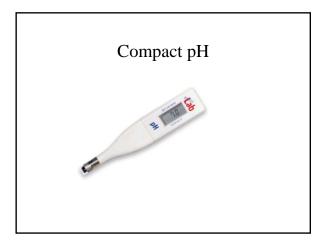
- Glassware errors
- Battery replacement
- Reagent systems shelf-life
- Colorimeter chamber issues
- Standards (primary versus secondary)
- Chlorine Demand Free Dilution Waters
- Blanking (sample versus reagent)

Glassware Issues(10)

- Reagent System Staining
- Cleanliness
- Scratches
- Variability between different pieces of glassware
- Glassware variability in a single cuvette

Residuals Testing(10)

- Inspect glassware for scratches and cleanliness routinely.
- Clean glassware regularly
- Replace glassware
- Watch for variability
- Use matched pairs where available.



- > Glass sensitive probe
- → Wet Storage
- ℅ Freq Calibrations
- 🔀 Analog
- ℅ Reading drift
- > 1000's probe choices

Next Generation pH Meter

- ➤ Compact
- ℅ Micro-chip Tech.
- ➢ Dry storage
- ≫ Water-proof
- > Liquid/solids meas.
- ≻Low-cost

Simple Dissolved Oxygen Monitoring

Common Meter Technology

≻Warmups

℅Membrane replac.

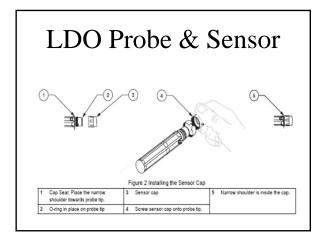
≻Air Sat. Cal.

- ≻Variables comp.
 - Salinity

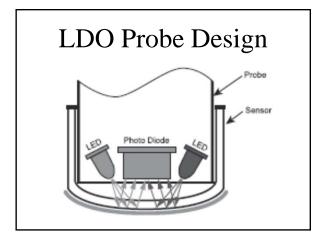
 - Y Temp
 X Altitude
 X Barometric Press.

≻Expensive

21st Century Technology


- Polarographic DO
- Waterproof housings
 No warmup time
 Auto air cal.
 Cartridge membranes
 Long battery life
 Weighted probe
 Auto variables compensa
 Low-cost
- No Membrane ElectrodeLuminescence
 - Technology – Hach LDO

YSI 550 Series Membrane Polarographic Meter



Luminescent Technology

• The Hach <u>LDOTM sensor</u> is coated with a luminescent material. Blue light from an LED is transmitted to the sensor surface where it excites the luminescent material. When the luminescent material relaxes it emits red light. This red luminescence of the sensor is proportional to the dissolved oxygen present. A red LED is incorporated into the sensor as an internal reference.

Leak Detection

- Simplified Field Fluoride measurements
- Simplified Chlorine Residual measurements

Current Methods

℅ SPADNS colorimetric method

- imes Hi-temp sample pretreatment
- > Expensive Colorimeter
- ightarrow Reagent Disposal issues

Current Methods

Ion Specific Electrodes
 Short-life Specific
 Electrode

- > Frequent calibration
- ℅ Sample pretreatment

- > No sample pretreatment
- ≻ Quick-to-run
- > Visual comparative test
- ℅ Inexpensive
- > Monitoring results only

