

3

Math Review

Formulas we will cover:

Math Review

- Area and
Volume
- Pounds
- Flows Formula (converting)
- Chlorine Dosage

5

7

Part 2 Math Review

4

Math Review

- AREA of a Square or Rectangle tank
- Length \times Width $=$ Square feet

6

8

9

11

13

10

Math Review CONVERTING FLOWS

- gpd
- gpm
- MGD

12

Math Review Convert $\mathbf{3 0 0} \mathbf{~ g p m}$	
$300 \mathrm{gpm} \times 1440=$	gpd
$\frac{300 \mathrm{gpm}}{694 \mathrm{gpm} / \mathrm{MGD}}=$	MGD

14

15

17

19

Math Review POUNDS FORMULA

- Pounds/day (ppd)
- ppd $=\mathrm{mg} / \mathrm{L} \times 8.34 \times \mathrm{MGD}$ MGD for flow rates
or
Pounds $=\mathrm{mg} / \mathrm{L} \times 8.34 \times \mathrm{MG}$ MG for tankage and pipes

16

18

Math Review CALCULATE mg/L

If

$$
\mathrm{ppd}=83.4
$$

MGD $=1$

21

23

25

Math Review
CALCULATE MGD
$\mathrm{ppd} / \mathrm{L}=83.4$

22

Math Review

CHLORINE DOSAGE

- DOSAGE: TOTAL amount delivered
- demand: what's in the water that consumes the chlorine
- residual: what's left over

24

27

29

31

28

30

Calculate Chemical Dosages

35

Calculate Chemical Dosages

Formulas we will cover:

- Chemical Feed
- Dry Products 100\% available
- Dry Products < 100\% available
- Liquids calculating ppg of available compound or element

36

Calculate Chemical Dosages
 DRY PRODUCTS
 100% Available by weight
 - Assume:
 $10 \mathrm{mg} / \mathrm{L}$ Dosage
 flow of 1 MGD

$10 \mathrm{mg} / \mathrm{L} \times 8.34 \times 1 \mathrm{MGD}=$

Pounds Required = pounds added when product is $\mathbf{1 0 0 \%}$ available

38

Calculate Chemical Dosages

CALCIUM HYPOCHLORITE (65\%)

- Step 1:

-Calculate based on $100 \% \mathrm{Cl}_{2}$
$10 \mathrm{mg} / \mathrm{L} \times 8.34 \times 1 \mathrm{MGD}=83.4 \mathrm{ppd}$ of Cl 2
83.4 pounds of Cl 2 required

Calculate Chemical Dosages
DRY PRODUCTS
100% Available by weight
If a product is 98 or 99% available
OK to assume 100\%

- Example:

CHLORINE GAS

37

Calculate Chemical Dosages
DRY PRODUCTS Less Than 100% available by weight

- CALCIUM HYPOCHLORITE (65\%)

65\% available chlorine (Cl_{2})

39

Calculate Chemical Dosages
CALCIUM HYPOCHLORITE (65\%)

- Step 2
- DIVIDE ppd of Cl2 by \% (in decimal)
83.4 ppd Cl2 $=\quad$ ppd
128.3 ppd of calcium hypochlorite 65% is necessary to provide 83.4 ppd of Cl_{2}

41

Calculate Chemical Dosages
LIQUID PRODUCTS

- Best way to set up dosages for liquid products.
-Is to first calculate ppg of what you are dosing

Calculate Chemical Dosages

LIQUID PRODUCTS

- What is Specific Gravity?

-Ratio of the density of a Liquid to Water (or a gas to air)
-Water has a Specific Gravity of 1.0
-Remember Water Weighs
ppg

43

Calculate Chemical Dosages

Pounds per Gallon (ppg) Example:
12.5\% Sodium Hypochlorite has
a sg of 1.2

So, 12.5\% Sodium Hypochlorite Weighs
ppg
12.5\% Available Chlorine
ppg as Cl2
45

Calculate Chemical Dosages

LIQUID PRODUCTS

2) calculate pounds per gallon (ppg) of what you are dosing (ppg FeCl3)

- A) total ppg ($8.34 \times \mathrm{sg}$ of the liquid)
-B) \% by weight of what you are dosing
- C) ppg of what you are dosing
$\mathbf{3 9 \%} \mathrm{FeCl} 3$ has a specific gravity (sg) of $\mathbf{1 . 2 6}$
8.34 ppg of water $x 1.26=10.5 \mathrm{ppg}$
10.5 ppg of product $x \mathbf{0 . 3 9}(\mathbf{3 9 \%})=$
4.10 ppg of FeCl 3

Calculate Chemical Dosages

- So now we know the pounds per gallon (ppg) of FeCl 3 in 39% liquid Ferric Chloride.
- Sometimes that will be what you will need to calculate your dosage
- Other times you may need to calculate pounds per gallon (ppg) of Iron (Fe)

48

Calculate Chemical Dosages

LIQUID PRODUCTS

4) calculate pounds per gallon (ppg) of what you are dosing (ppg Fe)

- A) total ppg ($8.34 \times \mathrm{sg}$ of the liquid)
-B) \% by weight of what you are dosing
-C) ppg of what you are dosing
$10.5 \mathrm{ppg} 39 \% \mathrm{FeCl} 3$
$\times 0.39(39 \% \mathrm{FeCl3})$
$\times \frac{0.348}{1.5 \mathrm{Fe} \text { in } \mathrm{FeCl} 3}$
1.43 ppg Fe

51

Calculate Chemical Dosages LIQUID PRODUCTS

Let's practice a little more:

- Product X is 100% available by weight
- Product X has a specific gravity of 1.37

Great
Next step is to calculate ppd required

OK Now Calculate
Pounds per gallon (ppg) of Product
ppg of product $=11.4$

Calculate Chemical Dosages LIQUID PRODUCTS

Product X is 100% available by weight

- Recommended dosage is $6 \mathrm{mg} / \mathrm{L}$ of product
- Flow is 2 MGD

OK Great
Now what do we do?

OK Now Calculate Pounds Per Day (ppd) required
$\mathrm{ppd}=2 \mathrm{MGD} \times 8.34 \times 6 \mathrm{mg} / \mathrm{L}$
ppd of product required $=100$

Calculate Chemical Dosages LIQUID PRODUCTS

Product X is 100% available by weight

- We calculated 100 ppd of product is required
- Product weighs 11.4 ppg

OK tell me the gpd feed rate?
Great now set the chemical feed pump to 9 gpd.
gpd feed rate $=8.77$ say 9 gpd feed rate

55

Calculate Chemical Dosages

50\% Hydrogen Peroxide

- $\mathrm{H}_{2} \mathrm{O}_{2}$ Dosage (pure) for Odor Control is $10 \mathrm{mg} / \mathrm{L}$

OK now let's calculate ppd of $\mathrm{H}_{2} \mathrm{O}_{2}$

- Flow is 5 mgd required?

57

Typical Compound Question Convert Flow then use Pounds Formula

What would be the expected chlorine residual of a water under the following condition?

- Flow rate is $\mathbf{2 , 0 0 0} \mathbf{~ g p m}$ (continuous)
- Chlorine demand of the water is $\mathbf{1 . 9 \mathrm { mg } / \mathbf { l }}$
- The amount of chlorine fed is $\mathbf{1 0 0}$ pounds per day of chlorine

Calculate Chemical Dosages LIQUID PRODUCTS

- Hydrogen Peroxide
- Product is $50 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (Hydrogen Peroxide) by weight
- Product weighs 10 ppg
- How many ppg of pure $\mathrm{H}_{2} \mathrm{O}_{2}$?

Calculate Chemical Dosages
50\% Hydrogen Peroxide

- Calculate $\mathrm{H}_{2} \mathrm{O}_{2}$ (pure) Dosage

$$
10 \mathrm{mg} / \mathrm{L} \times 8.34 \times 5 \mathrm{mgd}=\quad \mathrm{ppd}
$$

- Calculate gpd of $50 \% \mathrm{H}_{2} \mathrm{O}_{2}$

417 ppd $\mathrm{H}_{2} \mathrm{O}_{2} / 5 \mathrm{ppg}$
$=\quad$ gpd of $50 \% \mathrm{H}_{2} \mathrm{O}_{2}$

58

Typical Compound Question Convert Flow then use Pounds Formula

Step No. 1 Convert $2,000 \mathrm{gpm}$ to flow in MGD. $2,000 \mathrm{gpm} / \quad \mathrm{gpm} / \mathrm{MGD}=\quad$ MGD
Step No. 2 Use Pounds Formula for mg/L Dose $100 \mathrm{ppd} /(8.34 \mathrm{x} \quad \mathrm{MGD})=\mathrm{mg} / \mathrm{L}$

Step No. 3 Calculate Chlorine Residual $\mathrm{mg} /$ L Dose -1.9 Demand $=$ mg/L Residual

Post Test

