Example #1 Calculate Pounds Under Aeration for a Rectangular Extended Aeration Basin

Tank Dimensions:

60 ft. long by 20 ft. wide and 12.0 ft. deep

Mixed Liquor Suspended Solids (MLSS):

3200 mg/L

% Mixed Liquor Volatile Suspended Solids (MLVSS) 85%

Example 1 Demo.xls

Worksheet #1	handout					Input required				
Calculate Pounds	Under Aeratio	n fo	r			Calculate Value				
Square or Rectan	gular Tanks					•				
				Comments:	Example 1					
Square Footage (Surface Area)									
Length, ft	Width, ft	=	Sq. Ft.							
Volume in Cubic	Feet		Operating							
	Sq. Ft.		depth, ft		Cu. Ft.					
		X		=						
						,				
Capacity in Gallo	<u>ns</u>									
volume in	gals. Per		Capacity		Capacity					
Cu. Ft.	cubic ft		in gallons		in MG					
X	7.48	=				-				
Pounds of (MLSS) Mixed Liquor	Sus	spended So	lids_						
MLSS	# per gal		Capacity		pounds					
in mg/L	water		in MG		MLSS					
х	8.34	X		=		_				
Pounds of (MLVS	Pounds of (MLVSS) Mixed Liquor Volatile Suspended Solids									
pounds	Percent		pounds							
MLSS	MLVSS		MLVSS							
X		=								

Example #2 Calculate Pounds Under Aeration for a Circular Aeration Basin

Tank Dimensions:

60 ft. diameter and 12.0 ft. deep (at sampling)

MLSS:

2,000 mg/L

% MLVSS:

78%

Example 2 Demo.xls

Worksheet #	#2	Handout					Input Required
Calculate Pou	unds U	Jnder Aeratio	n fo	r			Calculate Value
for Circular 1	Basins	<u>i</u>					•
					Comments:	Example 2	
Square Foota	age (S	urface Area)					
Diameter,ft		Diameter,ft		1/4 Pi Facto	r	Sq. Ft.	
	X		Х	0.785	=	04.11.	
	^		Α.	0.700			
Volume in Cu	ıbic E	oot		Operating			
volume in oc	IDIC I	Sq. Ft.		depth, ft		Cu. Ft.	
		Oq. 1 t.	X	deptil, it] =	Ou. Ft.	
			^		_		•
Canacity in C	allan	•					
Capacity in G	allon			•			
volume in		gals. Per		Capacity		Capacity	
Cu. Ft.		cubic ft		in gallons		in MG	
-	X	7.48	=	_	-		•
					100 1000		
Pounds of (N	ILSS)	Mixed Liquo	r Su	spended Sol	ids		
MLSS		# per gal		Capacity		pounds	
in mg/L		water		in MG		MLSS	
	X	8.34	X		- =		-
Pounds of (N	ILVSS	6) Mixed Liqu	or V	olatile Susp	ended Soli	ds	
pounds		Percent		pounds			
MLSS		MLVSS		MLVSS			
	X		=		_		

Example #3 Detention Time

Average Flow:

504,000 gpd

Peaking Factor:

3.0

Circular Clarifier:

42 ft. diameter and 12.0 ft. average depth

Example 3.xls

Worksheet #	ŧ3	handout				Input red	quired		
Detention Tin	ne (c	larifiers or aera	tion	basins)		Calculate			
Peak Flows				Comm	ents:	Example 3			
Peak Factors grea	ater th	nan 4.0 are usually p	roble	matic					
and both ADF and	d Pea	k Detention Times s	hould	be					
monitored. Norma	ally or	nly ADF is used for D	T cal	culations.					
ADF	x	Peak Factor	=	Est. Peak Flow					
Determine Ca	pac	ity in gallons							
Area of a Rect	tang ×	yular or Square Width	Tank ×	Depth	=	Capacity, Cu. Ft.			
Area of a Circ	ular ×	Tank Diameter	x	1/4 PI 0.785	×	Depth =	Capacity, Cu. Ft.		
Convert Cu. F	t. to	Gallons							
Capacity, Cu. Ft.		gallons/ Cu. Ft.		Gallons					
	X	7.48	=						
Calculate Det	enti	on Time, hours		ADF					
Capacity, Gals		hrs/day		Flow Rate, gpd		DT, hrs (ADF)			
	X	24	1						
If Peak Factor is	If Peak Factor is greater then 4.0 monitor DT for both ADF and Peak Flows Peak								
Capacity, Gals		hrs/day		Flow Rate, gpd		DT, hrs (Peak)			
	X	24	1	-	=				

Example #4 Secondary Clarifiers Surface Overflow Rate (SOR)

Average Flow to Clarifier No. 1:

750,000 gpd

Peak Flow Rate:

2,000,000 gpd

Circular Clarifier:

45 ft. tank diameter

Example 4.xls

Worksheet #4 handout				Input Required
Secondary Clarifiers				Calculated Value
Surface Overflow Rate (SOR),	gpd/sq. ft.			
	-		(Standards
Peak Flows				
Peak Factors greater than 4.0 are usually pro-	oblematic.	mments:	Example 4	
Normally SOR is calculated using only peak	flows.			
Some operators/engineers use Peak and Ave	erage Flows.			
Clarifier Information				
ADF to Clarifier, gpd	Pe	ak Flow, g	pd	Peak Factor
Circular Clarifier (Surface Area,	1	0.705		0 5
Diameter, Ft. Diameter, Ft.	X	0.785 1/4 PI	= .	Sq. Ft.
Diameter, Ft.		1/4 [1		Surface Area
Or				
Rectangular Clarifier (Surface A	rea, Sq. Ft.)			
Length x Feet	Width =	urface Area	Sq. Ft.	
Surface Overflow Rate (SOR), g	pd/sq. ft.)			
, gpd /	Surface Area	=		SOR, ADF
, gpd /	Surface Area	=		SOR, Peak
Conventional Activated Sludge	800 ,g	od/sq. ft.	1,200 Peak Flow	,gpd/sq. ft.
Nitrification and Extended Air	500 ,g	od/sq. ft.	1,000 Peak Flow	,gpd/sq. ft.

Example #5 Secondary Clarifiers Solids Loading Rate (SLR)

Average Daily Flow to Clarifier No. 1:

0.750 MGD

Peak Flow Rate:

2.00 MGD

Clarifier Surface Area:

1,590 sq. ft.

RAS Rate 90%

MLSS 2800 mg/L

Example 5.xls

Worksheet #5 handout Secondary Clarifiers Solids Loading Rate (SLR), pp	od/Sq. Ft.			Input Requir	
Peak Flows			C	Standards	
Normally SOR is calculated using only peak	fl			_	
Some operators/engineers use Peak and Ave		Comments:	Example	5	
Clarifier Information					
ADF (Q) to Clarifier, MGD		Peak (Q) Flo	ow, MGD	Peak Factor	
Avg.RAS, MGD		Peak.RAS F	low, MGD		
MLSS, mgL		Clarifier Surfa	ace Area, S	q. Ft.	
Q + R Flow at ADF	MGD	Q + R Flow a	t Peak		MGD
Calculate Pounds to Clarifer , MGD x 8.34 x (Q + R) ADF Flow	MLSS	, mg/L =	to Clarifie	, pounds pe r (daily averag	
, MGD x 8.34 x	MLSS	_, mg/L =	to Clarifie	, pounds pe	r day
(Q + R) Peak Flow Calculate SLR	WILOS	=	to Glarine		@ average flow
, pounds per day / to Clarifier at ADF	Surface Area	_		_ ppu/sq. 1c.	e average nov
, pounds per day / to Clarifier at Peak Flow	Surface Area			_ppd/sq. ft.	@ peak flow
SLR - Conventional Activated Sludge	40 Average Flow	,ppd/sq. ft.	50 Peak Flo	ppd/sq. ft.	
SLR - Nitrification and Extended Air	30 Average Flow	,ppd/sq. ft.	35 Peak Flo	,ppd/sq. ft.	

Example #6 Flow-Thru Activated Sludge Organic Loading and F/M Ratio

Average Daily Flow to Basin No. 1:

0.800 MGD

Influent BOD:

160 mg/L

Basin Capacity:

Should wasting rate be adjusted?

0.500 MG

MLSS/MLVSS:

2200 mg/L / 1850 mg/L

Desired F/M Ratio:

0.10

Example 6 Demo.xls

Workshee		handout					Input Required	
Flow-thru	Activate	d Sludge Pr	ocess	es			Calculate Value	
Organic L	oading a	nd F/M Rati	0					
		ingle in service flow entering ba	asin.	Commen	ts:	Example (6	
Basin		Information						
Operating d	ata (Organi	ic Loading an	d FM R	atio)				
	Flow to bas	sin, MGD				Basin Capa	acity. MG	
	MLSS, mg			% MLVSS		MLVSS, mg	· ***	
	Influent o	r P.E. BOD, r	mg/L	-			ap. In 1000 cu. Ft. acity, gals / 7.48 /	1000)
Pounds of E BOD in mg/L	BOD enterin	ng basin # per gal water 8.34	x	Flow in MGD	=	pounds of BOD/day		
Calculated (ading (ppd of er day BOD	BOD/10		1000 cu.ft.	capacity	=	_
Pounds of MLVSS in mg/L	(MLVSS) ×	Mixed Liquo # per gal water 8.34	r Susp ×	ended Solid Capacity in MG	<u>s</u> =	pounds of MLVSS		
Food to M pounds of BOD/day	icroorgan /	isms pounds of MLVSS	=	FM Ratio		DESIRED Ratio	FM	
to increase	F/M increa	ase wasting		to decreas	e F/M dec	rease wasting		

Example #7 Flow-Thru Activated Sludge Sludge Age (SA) & Sludge Volume Index (SVI)

Flow Rate to Basin No. 1: 0.800 MGD

Influent TSS: 160 mg/L

Basin Capacity: 0.500 MG

MLSS/MLVSS: 2200/1850 mg/L

30 min. settling test 300 ml/L

Desired SA 10 days

Desired SVI 100

Example 7 Demo.xls

Workshee Flow-thru		Input Required Calculate Value				
Sludge Ag	e (SA) ar	nd Sludge \	/olume	e Index (S	VI)	
basin. Calculat		ingle in service flow entering ba	sin.	Comme	nts:	Example 7
Basin		Information				
SA and SVI I	nformation	1				a
	Flow to Ba	sin, MGD				Basin Capacity, MG
	MLSS, mg	ı/L _		% MLVSS		MLVSS, mg/L
	Influent o	r P.E. TSS, r	mg/L			30 min settling test, ml/L
Pounds of T	SS enterin					
TSS in mg/L		# per gal water		Flow in MGD		pounds of TSS/Day
iii iiig/L	×	8.34	×	IIIWOD	=	100/Day
					_	
Pounds of	(MLSS) M	ixed Liquor	Susper	nded Solid	ls	
MLSS		# per gal		Capacity		pounds
in mg/L		water		in MG		MLSS
	X	8.34	X		_ =	
Sludge Ave		(using MLSS)	1			
MLSS		TSS/Day		SA Days		DESIRED SA
	1		=			Days
	decrease v	wasting to raise	e SA		_	
Sludge Vo 30 min settling, ml/L		lex (SVI) MLSS, mg/L	x	1,000	=	SVI DESIRED SVI

Example #8 Flow-Thru Activated Sludge Solids Retention Time (SRT)

Effluent Flow (for Basin #1): 0.800 MGD

Effluent TSS:

5 mg/L

Basin Capacity:

0.500 MG

MLSS:

2200 mg/L

Waste Sludge:

11 gpm

Waste Sludge Suspended Solids

(WSSS):

6,500 mg/L

Desired SRT:

11.0 Days

Should the wasting rate be changed?

Example 8 Demo.xls

Worksheet #8 handout Input Required Flow-thru Activated Sludge Processes Solids Retention Time (SRT)										
Use this Works basin. Calculate		ngle in service low entering basi	n.	Comments	•	Example 8				
Basin [Information								
SRT Informat	tion									
	Effluent Flo	w, MGD				Basin Capacity, MG				
MLSS, mg/L					WSSS, mg/L					
	Wasted S	Sludge, gpm				Wasted Sludge, MGD				
	F. (1)	-00 "								
	Effluent I	SS, mg/L								
Pounds of (MLSS) M	ixed Liquor S	usp	ended Solids						
MLSS		# per gal		Capacity		pounds				
in mg/L	v	water		in MG	_	MLSS				
	X	8.34	X		=					
Solids Was	ted, ppd									
WSSS		# per gal		Waste Sludge		WSSS				
in mg/L		water		in MGD		in ppd				
	X	8.34	X		=					
Effluent TS	S Wasted	1920								
TSS		# per gal		Effluent Flow		TSS				
in mg/L		water		in MGD		Over Weir, ppd				
	X	8.34	X		=					
Total ppd W	/asted (W	aste Sludge	and	TSS Over Weir	r):					
WSSS		SS Over Weir		Total Solids	_					
in ppd		in ppd		Wasted, ppd						
	+		=							
		-				BEAUBER OF	T .			
	pounds MLSS	Tota Was			ays	DESIRED SE	1			
SRT		/ _	,	_ = _	., -					

Example #9 Sequencing Batch Reactor Calculating Pounds Under Aeration (Square or Rectangular Basins)

Dimensions:

90 feet long by 80 feet wide

9.5 feet LWL

MLSS/MLVSS:

2500 mg/L / 1850 mg/L

Depth of Basin at Sampling:

14.5

Calculate for Basin No. 1

Example 9 Demo.xls

Worksheet #9 handout				In	put requi	red			
Calculate Pounds Under A	Aeration for		Calculate Value						
Square or Rectangular SE	BR Basin	_							
			Comments:	Example 9					
Use this worksheet for a single	e SBR Basin.								
Basin Inform	ation	L							
Basin Length, fe	eet		Basin Width, feet						
MLSS, mg/L at sample depth MLVSS, mg/L at sample depth									
Depth of basin at sampling, feet Low Water Level (LWL), feet									
Conversion Factor (CF) = (Sample Depth / LWL)									
Square Footage (Surface A	DOT .								
Length, ft Width,	ft	Sq. Ft.							
x									
Volume in Gallons at Low V	Vater Level (L	.WL) Depth							
		gallons per		Capacity in		MG Capacity			
Sq. Ft. LWL,	, Ft.	cubic foot		gallons at, LWL		at LWL			
х	x	7.48	=		or				
Pounds of (MLSS) Mixed	Liquor Suspe	ended Solid	ls at LWL						
MLSS		# per gal		MG Capacity		pounds			
in mg/L CF		water		at LWL		MLSS			
х	x	8.34	X		=				
Pounds of (MLVSS) Mixed	d Liquor Sus		ids at LW	<u>L</u>					
MLVSS		# per gal		MG Capacity		pounds			
in mg/L CF		water		at LWL		MLSS			
x	x	8.34	X		=				

Example #10 Sequencing Batch Reactor Calculating Pounds Under Aeration (Circular Basins)

Dimensions:

90 feet diameter

9.5 feet LWL

MLSS/MLVSS:

2500 mg/L / 1850 mg/L

Depth of Basin at Sampling:

14.5'

Example 10.xls

Workshee	t #10	handout				In	put requir	red		
Calculate F	Pounds U	Inder Aerati	on for			Ca	alculate Va	alue		
Circular Sl	BR Basii	<u>n</u>								
		=2			Comments	: Example 10				
Use this work	ksheet for	a single SBR	Basin.							
Basin		Information								
	Basin Di	ameter, feet								
	MLSS, mg/L at sample depth MLVSS, mg/L at sample depth									
	Depth of basin at sampling, feet Low Water Level (LWL), feet									
Conversion Factor (CF) = (Sample Depth / LWL)										
Square Foo	tage (Su	ırface Area)								
Diameter		Diameter		1/4 pi		Sq. Ft.				
1	X		X	0.785	=					
Volume in C	Sallons a	t Low Water	l evel (I WI) Denth	1					
volume in c	Janon's a	LOW Water	LCVCI	gallons per	_	Capacity in		MG Capacity		
Sq. Ft.		LWL,Ft.		cubic foot		gallons at, LWL		at LWL		
ń	X		X	7.48	=		or			
Pounds of	(MLSS)	Mixed Liquo	r Susi	pended Sol	ids at LW	L				
MLSS				# per gal		MG Capacity		pounds		
in mg/L		CF		water		at LWL		MLSS		
	X		X	8.34	×		=			
							,			
Pounds of	(MLVSS) Mixed Liqu	or Su	spended So	olids at LV	<u>VL</u>				
MLVSS				# per gal		MG Capacity		pounds		
in mg/L		CF		water		at LWL		MLVSS		
	X		X	8.34	X		=			

Example # 11 Sequencing Batch Reactor Food To Microorganisms (F/M), Sludge Age (SA), and SVI

Flow to Basin No. 1:

0.750 MGD

Influent BOD:

180 mg/L

Influent TSS:

170 mg/L

Settling Test:

480 ml/L at 60 minutes

MLSS:

2,500 mg/L

Pounds of MLSS/MLVSS at LWL: as calculated in Example #9 16,282 / 12,049

Example 11 Demo.xls

	Input Required Calculate Value
Comments:	Example 11
	a
	MLVSS pounds at LWL
	Influent or P.E. TSS, mg/L
	Settling test, ml/L
h	Minutes (settling test)
Flow in MGD	pounds of BOD/Day
=	
Flow in MGD	pounds of TSS/Day
=	
VL	
, pounds =	F/M
SA Days	araiga SA
or decrease washing to	/ Taide OA
1,000 =	svi
	Flow in MGD = Flow in MGD = VL = NL = SA Days or decrease wasting to

Example #12 Sequencing Batch Reactor Solids Retention Time (SRT)

6 mg/L

Effluent Flow (Basin #1): 0.750 MGD

Effluent TSS:

MLSS at LWL: 16,282 pounds

Waste Sludge (rate): 160 gpm

Wasting time: 24 mins./cycle

Cycles per day: 5

WSSS: 6,500 mg/L

Desired SRT: 14.0 Days

Example 12.xls

Worksheet SBR Activa Solids Rete	ted Slud	handout dge Process ime (SRT)	;		Input Required Calculate Value
Use this Worksh basin. Calculate		ingle in service flow entering bas	in.	Comments:	Example 12
Basin		Information			
	ffluent Flo	ow, MGD (basir unds at LWL	1)		Effluent TSS, mg/L WSSS, mg/L
	Wasted S	Sludge, gpm			Wasted Sludge, MGD (in 24 hours)
V	Vasting N	flinutes per cy	cle		cycles per day
Solids Waste	ed, ppd				
WSSS		# per gal		Waste Sludge	WSSS
in mg/L		water		in MGD	in ppd
	X	8.34	X	=	
Effluent TSS	Wasted	, ppd			
TSS		# per gal		Effluent Flow	TSS
in mg/L		water		in MGD	Over Weir, ppd
	X	8.34	X	=	
Total and W	astad (M	lasta Sludga	and	TSS Over Weir):	
WSSS		SS Over Weir	ana	Total Solids	
in ppd		in ppd		Wasted, ppd	
	+		=		
Solids Reter	ntionTim pounds MLSS	Tota	al So	olids ppd days	DESIRED SRT Days
	IVILOG	ı	steu,	ppu days	Days